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In a classic experiment, Bartlett and Porter showed that the 
thermal and photochemical decomposition olmeso- (la) and d,l-
(Ib) 3,6-diethyl-3,6-dimethyldiazacyclohex-l-ene was highly 
stereospecific.1 They concluded that the rate of ring closure of 
the putative 1,4-biradical intermediate to yield cyclobutane 
products was significantly faster than C-C bond rotation. Our 
interest in azo cation radicals led us to question whether the 
photooxidative decomposition of la,b would also be highly 
stereospecific.23 In particular, would the potential 1,4-cation 
radical intermediate face a fate similar to that of the 1,4-biradical? 
In this regard, we have found that the reaction is indeed 
stereospecific; however, our experiments suggest that it is 
ultimately the 1,4-biradical which determines the stereochemical 
outcome and not the 1,4-cation radical. 

Irradiation (X > 420 nm) of dicyanoanthracene (DCA, 0.5 
mM) with la or lb (7.5 mM) in benzene at 15 0C yields a mixture 
of cw- (3a) and trans- (3b) l,2-diethyl-l,2-dimethylcyclobutane 
and2-methyl-l-butene.4 The ratio of cis:trans stereoisomers (3a: 
3b) from la and lb is >20:1 and <1:20, respectively.4 Photo-
oxidation of 3,3,6,6-tetramethyldiazacyclo-l-hexene (2) under 
similar conditions yields 1,1,2,2-tetramethylcyclobutane (4) and 
2-methylpropene (5). A reasonable mechanism for the cyclo­
butane formation is shown in Scheme I. 

Photoinduced electron transfer from 1 or 2 to the excited state 
of DCA generates the DCA-/azo'+ ion radical pair which 
subsequently loses nitrogen to yield the 1,4-cation radical.5 This 
intermediate can undergo ring closure to the cyclobutane cation 
radical which is then reduced by DCA- (Path A). Alternatively, 
the 1,4-cation radical could be first reduced by DCA- to the 
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(4) Compounds la and lb were prepared according to literature procedure.' 
Irradiations were conducted in freeze-pump-thawed sealed tubes. Irradiation 
(X >420 nm, 8 h) of 2 in the absence of DCA results in minimal decomposition 
(<2% 4 and 5 formed). Under similar irradition conditions with DCA present, 
complete decomposition of 2 results. The products were satisfactorily 
characterized by GC, GC-MS, and' H NMR. Yields were determined by GC 
using an internal standard. The ratios of 3a:3b were corrected for reactions 
using 88% la containing 12% lb and 80% lb containing 20% la. The yields 
of 2-methyl-l-butene from la and lb are 44 and 38%, and the yields of 
cyclobutane (3a and 3b) are 51 and 57%, respectively. 

(5) (a) The loss of nitrogen presumably occurs by an initial C-N bond 
cleavage to yield either the diazonium/radical or diazenyl radical/cation 
intermediate, which then loses nitrogen to form the 1,4-cation radical. 
Alternatively, this intermediate can be reduced by DCA'- to the diazenyl 
biradical which loses nitrogen. Although the 1,4-cation radical may not 
necessarily be formed, the conclusions of the described experiments are 
unaffected, (b) The radical and cation centers of the 1,4-cation radical may 
have appreciable interaction to the extent that the species might be considered 
to be the cyclobutane cation radical 4-+. However, electron transfer to 4 ,+ 

from DCA* must yield the 1,4-biradical which can partition between products 
4 and 5. Current experiments are aimed at differentiating the chemistry of 
the ring-opened and ring-closed forms of the 1,4-cation radical. 
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Scheme II 

1,4-biradical, which then stereospecifically closes to the cyclo­
butane (Path B). These two pathways differ only in the relative 
rates of ring closure and return electron transfer. 

In an effort to distinguish these two mechanistic possibilities, 
azo 2 was photooxidized in a medium polarity solvent (CH2Cl2) 
where separation of the DCA-/azo*+ ion radical pair may 
compete with nitrogen loss and the subsequent reactions of the 
1,4-cation radical. In Path B, separation would potentially 
increase the lifetime and perhaps alter the chemical fate of the 
1,4-cation radical. Irradiation (X > 420 nm) of DCA (0.4 mM) 
with 2 (10 mM) in CH2Cl2 yields 4 (31%), 5 (28.5%), and two 
new products, 2,5-dimethyl-l-hexene (6, 9%) and a 1:1 adduct 
of the 1,4-cation radical and azo 2 (7,32%).46 The four products 
4-7 can all be derived from the 1,4-cation radical, Scheme II. 
The DCA-/1,4-cation radical pair can undergo electron transfer 
to the 1,4-biradical and then 4 and 5, or it could yield 4-7 via 
their respective cation radicals, 4*+-7*+. Alternatively, separation 
of the DCA-/azo,+ ion radical pair and nitrogen loss can also 
yield the 1,4-cation radical and products 4-7 via their respective 
cation radicals. 

To determine which (if any) of these products are derived 
from a common intermediate, two experiments were conducted. 
First, the formation of6 involves an intramolecular [1,5] hydride 
or hydrogen atom transfer from one of the methyl groups of the 
1,4-cation radical. If isotopic substitution decreases this reaction 
rate, the yield of 6 and that of products involving a common 
intermediate would be affected. Photooxidation of perdeuterio-
methyl 2, {2-du) in CH2Cl2 yields 4 (31%), 5 (28%), 6 (<2%), 
and 7 (41%).4 Although the yields of 4 and 5 are relatively 
unaffected by deuterium substitution, the yield of 6 is decreased 
and that of 7 is increased from 2-d12 relative to 2. Second, the 
addition of CH3CN (0.2-3.2 M) to the reaction results in 
decreased yields of 6 and 7 and increased yields of the cyclic 
imine 8, which presumably is formed from the interception of the 
1,4-cation radical.27'8 Importantly, the yields of 4 and 5 are 

(6) In contrast, the direct photochemical decomposition of 2 in CH2CI2 
yields only 4 (38%), 5 (58%), and 6 (3%). In benzene, only 4 and 5 are 
formed. 
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significantly less unaffected by the added CH3CN.8 Both the 
effect of added CH3CN and the observed product isotope effect 
imply that 6 and 7 are formed from a common intermediate, 
which does not yield either 4 or 5.9 

These experimental observations suggest that 6 and 7 are formed 
via the ion-separated 1,4-cation radical and 4 and 5 are formed 
via the ion-paired 1,4-cation radical (and subsequently the 1,4-
biradical). Although 4 and 5 could be formed via 4"+ and 5'+, 
it seems unreasonable that the rate of closure or cleavage of the 

(7) The lifetime of the ion-separated 1,4-cation radical is presumably 
significantly longer than when ion-paired, and so it is more readily intercepted 
by CH1CN at low concentrations. Presumably, at higher [CH3CN], 
interception of the ion-paired 1,4-cation radical would occur, decreasing the 
yields of 4 and 5. 

(8) The respective yields of 4, 5, 6, 7, and 8 are 30, 29, 9, 33, and 0% at 
[CH1CN] = O M; 23, 23, 6, 23, and 23% at [CH3CN] = 0.2 M; 20, 20, 3, 
12, and 46% at [CH3CN] = 0.9 M. The somewhat reduced yields of 4 and 
5 with increasing [CH3CN] may be due to (i) a change in the efficiency in 
separation of the ion pair due to increased solvent polarity or (ii) chain 
propagation by 8*+ which would increase the yield of products 6,8 relative to 
products 4,5.- Importantly, the effect of added CH3CN affects the yields of 
4,5 and 6,7 differently. 

(9) This effect can be described as an induced kinetic isotope effect. See: 
Samuelson, A. G.; Carpenter, B. K. J. Chem. Soc, Chem. Commun. 1981, 
354. 

1,4 cation radical should be dependent on the presence (4 and 5) 
or absence (6 and 7) of the counterion DCA-.5 These results 
also imply that hydride or hydrogen transfer of the 1,4-cation 
radical to form 6 occurs faster than ring closure to 4 or cleavage 
to 5.5b 

By analogy to 2, the stereospecific photooxidative decomposition 
of la,b to yield cyclobutanes 3a,b in benzene (and CH2Cl2) occurs 
via the 1,4-biradical (formed from the 1,4 cation radical). This 
implies that loss of nitrogen, return electron transfer, and ring 
closure all occur faster than C-C bond rotation after the initial 
C-N bond scission of the azo cation radical. Although the 
photooxidative mechanism for formation of the 1,4-biradical from 
1 is different than from the thermal and photochemical methods, 
the chemistry and stereos pecificity of the 1,4-biradical are similar. 
In fact, these experiments provide a rather stringent test to 
demonstrate the generation of biradical intermediates from azo 
compounds and potentially other suitable precursors. 
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